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ABSTRACT 

In the calculation of the resolution function for a neutron spectrometer the scattering probabilities for 
the various components (moderator, monochromator, sample, etc.) are usually described separately by 
Gaussian functions. We will show how to extend the resolution calculation to non-Gaussian (e.g. 
asymmetric) probability functions. In addition, we present a refinement of the formalism by including 
the mutual dependencies between the probability functions of different components. These irnprove- 
ments can be applied both on triple-axis and time-of-flight instruments. As an example the procedure 
will be discussed on the resolution function of a difkctometer at a pulsed source (ROTAX-Diff. at 
ISIS). In particular we will focus on the treatment of the asymmetric time distribution of the methane 
moderator, leading to asymmetric peak shapes in the measured spectra. 

1.) Introduction 

Browsing through publications concerning resolution calculation of neutron spectrometers it is common 
sense that all probability distributions are approximated by Gaussian functions. In most cases this ap- 
proximation is quite sufficient if not accurate. In some cases, however, it is not appropriate at all. The 
well defined edges of diaphragms or detector channels or the sample itself are examples of rectangular 
distributions, poorly approximated by Gaussian functions. Further we must deal with asymmetric func- 
tions like the temporal distributions of the incoming neutrons on a pulsed source arising from the prop- 
erties of the moderator. A correct treatment of the asymmetry is crucial in the time-of-flight analysis of 
the measured peaks. In this paper we will present some ideas how to use non-Gaussian functions in the 
resolution function so that the calculation can still be carried out analytically. These calculations are 
mainly based on the use of the error-function erf(x) and Gaussian expansion. The latter has been used 
successfully for the description of Lorentzians in an analytical 4d-convolution [ I]. 
Further we will show a refinement in the algorithm of resolution calculation. All probability distribu- 
tions (Gaussian or non-Gaussian) will be expressed in terms of the basic coordinates in space and time 
of the various components of the spectrometer. ln the process of integration over these variables all 
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mutual dependencies between different distributions (i.e. different probability functions contain the same 
variable) are automatically included. 
As a first step we have carried out this algorithm for ROTAX-Diff. [2,3], a diffractometer at the pulsed 
source ISIS, including the asymmetric pulse shape of the moderator. The principles of this calculation 
can be well demonstrated on this comparatively simple example. A comparison with experimental re- 
sults as well as more complicated calculations for the ROTAX-spectrometer and triple-axis instruments 
including focusing techniques are in progress. 

2.) Non-Gaussian distributions 

For this subject we will demonstrate the analytic treatment of non-Gaussian functions in the resolution 
calculation. Two different methods will be discussed: Gaussian expansion and the use of the error- 
function erf(x). As examples we have chosen rectangular distributions and, as an asymmetric case, the 
moderator time structure on a pulsed source. In addition, a Gaussian expansion for exp(-x4)-terms is 
shown as well. 

a) Rectangular distributions 

For the definition of these function we use the unit-step function e(x) : 

@O 1 1,x20 
x := 

o,x<o 
(1) 

A rectangular distribution W(X) is then created by: 

w(x):=e(x+l)-e(X-1) (2) 

Many components can be described by this fundion, like the shape of sample or analyser or detector 
channels. A rectangular sample with the dimensions a and b then reads: 

(3) 

i) Use of erf(x) 

For further mathematical treatment it is much more convenient not to use this discontinuous function 
but to deal with the continuous error-function: 

(4) 

Products of these fimctions can be expressed as sums: 



Together with Gaussian distributions we end up with single products of these two hinds of functions. 
Therefore we have to deal with integrals of the following type, easily solved analytically: 

ii) Gaussian expansion 

With this method we approximately describe an (almost) arbitrary function by a sum of Gaussians. Fit- 
ting parameters can be height, width and centre of the Gaussians. In most cases restrictions will be 
made on the parameters to simplify the fitting procedure. For a function like p.&,,yj we use equidistant 
2dimensional Gaussians of the same height. This restriction drastically simplifies the calculation of the 
parameters with little loss of accuracy. Fig. 1 shows a plot of a rectangular structure approximated by 
3x10 Gaussians. 

Fig]: Gaussian expansion for a 2-dim. rectangular distribution with 3 *I 0 peaks 

The equation for this approximation reads 

w(2*/a)-w(2y/b)~d.~exp[-p:.(x-*j)2].~exp[-~~.(~-y,)2] 
i=l j=l 

(7) 
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with 

xi =x0 +i4r; yj =yo +J’.Ay (8) 

From symmetry considerations the final number of parameters can be further reduced to five. They can 
be determined in general, only depending on n and m, by non-linear least-square methods. 

b) Moderator Time Structure 

For a mathematical model of these type of functions we follow the guidelines given in [4]. For the meth- 
ane moderator at the spallation source ISIS we end up with the following equation: 

p,(At,)=[2z,R+22,(1-R)]-‘.[R.exp(r: -At&,).erfc(q -At, lo)+ 

(1- R).exp(Ki -Af,/z,).e~~K,-At,/a)]; 

Kl.2 = o/22,,,; (9) 

R(A)= +erfc 
with 
zz = 32.0 pet; r2= 2.5 psec IHi; CT= 1.5 psecl8i; c = 3.4 A; ;lo = 2.45 A 
and the complementary error-function 
erfc(x) = 1 - erf(x) . 

The time structure p&&U, is given normal&d so that the integration over dt~ will yield 1. 

i) Use of erf(x) 

Since the function&A&L defined by eq.9, is already given in terms of Gaussians and error-functions 
it can be directly used in the resolution calculation. We get integrals like eq.6 and the calculation is 
straight forward. 

ii) Gaussian expansion 

Despite the nice mathematical description we have got in eq.9 we have to consider that this is the result 
of theoretical predictions and the parameters are based on Monte-Carlo-Simulations. Therefore, the real 
time structure may look a little different due to circumstances in the set-up of the moderator which are 
not included in the calculations. Considering a case where the function would just be determined ex- 
perimentahy by a series of data-points the Gaussian expansion will deliver a very accurate and easy 
way to handle those functions in the resolution calculations. 

Fig.2 shows the result of a 7-peak Gaussian expansion for eq.9 and neutron energy of 50 meV. It dem- 
onstrates that a small number of Gaussians is already sufficient to describe a function like eq.9 with 
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high accuracy. It should be mentioned that this particular function just serves as an example, the ex- 
pansion will work equally well throughout a wide range of functions. 
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Rg.2: 7-peak Gaussian expansion of a moderator time structure 

c) Expansion for exp(-x4)- terms 

The function exp(-x4) shall be a final example for a non-Gaussian distribution. Why this function? We 
will mention two cases: 

i) Quadratic Terms: 

If the linearisation which is usually carried out for all variables in the resolution calculation is not suf- 

ficient quadratic terms may be used in addition. Putting them into Gaussian distributions will result in 

exp(-x4)-terms. 

ii) Dispersion Relations 

For the general use of quadratic terms from a dispersion relation in the convolution with the resolution 

function we need to deal with $-terms in the exponent&. Also in this case the following expansion 

shows an analytic way to do the calculation with sufficient accuracy. 

al = 5.6064; a2= 2.7981; b = 0.66432; cl = 0.55693; c2= 0.91027; 
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A plot is shown in Fig.3. We will use this expansion for a generalisation of the 4d-convolution in [ 11. Cal- 
culations are in progress. 
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8ig.3: 3-peak Gaussian expansion for the function exp(-x4) 

3) Refined resolution formalism 

The principle of the refinement is the use of the basic coordinates in space and (if applicable) in time 
for all components so that all misfits and their probability distributions are expressed in terms of the 
coordinates of sample, analyser, detector, etc. Integrations are then performed on these variables and 
therefore simultanuoudy on all distributions which are depending on them. This includes automatically 
all dependencies between distributions treated separately otherwise. Two short examples shall be given: 

i) Time-of-flight: 

Let us assume an angular misfit n of incoming neutrons at the sample. It is clear that neutrons with @-O 
will preferably arrive at one side of the sample and vice versa (cf. fig.4a). Thus the misfit of the secon- 
dary length dLf (and the corresponding time-of-flight) is directly related to 3/;: because both are functions 
of the sample coordinates xS and yS. Two separate distributions for z and dLf will not take in accotmt 
this mutual dependency. In the refined formalism the integration coordinates will not be 3 and &but 
the coordinates xs and ys instead. 

ii) Triple-axis: 

For this instrument we consider a focusing analyser. Depending on the angular misfit of the incoming 
neutrons they will find a mosaic spread centred on different values 70 (cf. fig.4b). Therefore r,~ is di- 
rectly connected to the coordinate yA. Assuming a Gaussian distribution of width cr for the mosaic 
spread q this fact can easily be expressed by a probability function for q depending on yA . 
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&7)=ev[-(v vo(y,))’ /02] (12) 

Again, the mutual dependencies between mosaic spread and angular misfit are included in the refined 
formalism by using the basic coordinates. In addition, this hind of treatment provides a straight forward 
way to include focusing techniques at triple-axis machines into the resolution calculation . 

4 

i 
> 0 for YA < 0 

4) 

Fig..: Schematic diagrams of misfit combinations for time-offlight and triple-axis machines 

Resolution function of ROTAX-Diff. 

Using the formalism described above we have calculated the resolution function of ROTAX-Diff., i.e. 
the diffraction mode of the ROTAX spectrometer installed at ISIS [2,3]. Fig.5 shows the set-up with the 
relevant variables and coordinate systems. 

Fig..: Set-up of ROTM-DifJ with definitions of variables and coordinates 
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So far we have used the Gaussian approximation for all probability distributions except the time struc- 
ture of the moderator. It is very important to include this asymmetric function since it leads to corre- 
spondingly asymmetric peaks in the measured spectra as well. Further improvements beyond the Gaus- 
sian approximations will be made where the experimental data show that improvements are necessary. 
Tests are planned for the near future. 
The calculation includes the in-pile collimation (o$, size of moderator (by), sample (a&r) and detector 
channel (a&~) as well as the moderator time structurep&‘Atu) and the time width of the detector chan- 
nels (~0). The resolution function is then given by 

p(~)=IS(~+d,.~/k,+A0.d~.cot6) 

-6(y, -(x,.sinfl+y,.COSn-y,)lL,) 

.G(yi,ai).G(Y~,b,).G(x,,a,).G(Y~,b,).G(x,,a,).G(Y~,b,).G(”,,’,) (13) 

’ P,(At,)dy, d% dy, d% dYodAt,dAthl 

*lexp [ --$($+f].pM(AtM)dAtM 

with 

G(x,a):=exp(-x2 la’) (14) 

and the time structure of the moderator as defined in eq.9. For the calculation all coordinates are trans- 
formed into the sample coordinate system. The corresponding equations and definitions of all misfits 
and abbreviations can be found in the appendix. The final integration is carried out according to eq.6. 

5) Conclusion 

In this paper we have introduced some ideas to improve the resolution calculation with mathematical 
methods to go beyond the Gaussian approximation but still keep the calculation analytical. Both the er- 
ror-function and Gaussian expansion are the keys to perform this task. Further, we have shown a re- 
fined formalism to achieve a more accurate description of the dependencies for the probability distribu- 
tions among each other. The formalism works for both Gaussian and non-Gaussian distributions. As an 
example it has been used for a time-of-flight diffractometer fully including the asymmetric time struc- 
ture of the moderator. For the future we plan to present complete calculations for triple-axis machines 
including flux enhancement techniques like focusing devices and, on the time-of-flight sector, the reso- 
lution function for the ROTAX-spectrometer with its non-uniformly spinning analyser which will really 
emphasize these new techniques in resolution calculation. 
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Appendix 

Basic equations, definitions and abbreviations for the resolution calculation (eq. 13): 

Detector coordinates in sample coordinates: 

Moderator coordinates in sample coordinates: 

Sample axis rotation: 

x- s (I( cod.2 -sinR xs 

yj. = sinl.2 cod2 x.Y~ S 

Deviations in lengths and angles: 

Ui =x,+cosR-y,.sinR-x, 

AQ, =$.[- x, . sin(Cl - fp) - yS . cos(Q - 9) +x,.sin(~,-~)+Y,-co~~,-~))l 
f 

++.[-q. sinR-y, .cosR+y,] 
I 

yi +. (x,.sinQ+y, -co&-y,) 
1 

Deviations in wave vector and d-spacing: 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Ad 
-=+-Ae-c0te 
d0 0 
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(22) 



~=~.[2x,.sine.sin(8-n)-2y,.sine.~os(e-n) 
0 0 

+xD~cos(~, -p)-yD 4n(q, -q)]- AtD rAtM 
0 

Abbreviations: 

Lo=Li+Lf; to=-- e=E. d= kO 

tiko ’ 2’ ’ x.sinB 

y,‘=(YD’ +v-).ljs2 -v;c /v,2 

V’ = A,2 B,2 

?+&A; +&B; +V; 

c = &B,“Es -I- b,AjKc 

V; = A;Bz, 

Y; =V,’ + A$; + B;I?f 

A,=lla, 

B,=llb, 

A,=lla, 

B,=llb, 

A, =1/a, 

B,=llb, 

4 =1/a, 

A,=k&.sinCJ 

d&=4 .cosO 

kS=K.sin(qo -p)+cos(p, -p) 

kC = KS cos(q, - q) - sin@, - q) 

JTS=KSsin(C2-q)+cos(C2-p)+K’~sinSZ-cosn 

~C=K~cos(12-~)-sin(12-~)+K’~cos~+sin~ 

cot 8 
K=- 

2v 

(23) 

(24) 

cot e 
lc’= 2(1-v) 

Lf v=- 
Li 
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